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EFFECT OF VISCOSITY ON THE CONDITIONS FOR THE FORMATION OF 
CENTRIFUGAL SOLITONS IN THE TRANSLATIONAL-ROTATIONAL FLOW OF A LIQUID" 

R.A. BRAZHE 

The viscosity of the medium is taken into consideration in deriving an 
evolution equation describing the propagation of non-linear centrifugal 
waves along the free surface of a translational-rotational liquid flow. 
The result is the Burgers-Korteweg-de Vries (BKdV) equation, for which a 
steady solution is described in the form of a shock wave with soliton 
oscillators near the front. Estimates are presented for the effect of 
viscosity on the wave-front structure and the conditions of formation 
previously predicted by the author /l/ for centrifugal solitons, which 
play an important role in various atmosphere processesjtjt. 

1. Derivation of the evol%ion equation. The problem of the propagation of centrifugal 
waves along the free surface of a translational-rotational flow of an ideal incompressible 
liquid can be reduced /l/ to solving the Laplace equation for the angular component.of the 
vector potential of the velocity field, with non-linear boundary conditions. If viscosity is 
taken into account, the kinematic boundary condition remains unchanged: 

but the dynamic condition, obtained by axial projection of the equation of motion for a viscous 
incompressible liquid, is now 

Here v is the kinematic viscosity of the medium; the other notation retains its orginal 
meanings. 

Using the perturbation-theoretical procedure described in /l/, one can derive from (1.1) 
a BKdV equation for the radial perturbation of the free surface of the flow in variables E= 
z + cot, 7 = --t: 

'lr +%%h-%l~ f'/zM~~~~ + V'1EE = 0 (1.3) 

Here we have assumed that the dissipation is weak: 

v/(c&< 1 (cO = r;$1/(R* -- r0")/2 = urn fi) (1.4) 

where q is the propagation velocity of a linear centrifugal wave /2/ along the free surface 
of a twisted flow of thickness h-R--r, <ro, and 1 is the length of the perturbed part of the 
flow. 

When there is no viscosity, (1.3) becomes a Korteweg-de Vries (KdV) equation, which has 
a one-soliton solution in variables z, tjt"jc 

'l=QsechPT, L=2 v- 
-F- 
7.7’ 

v~c,(l+~) 

Dividing Eq.(1.3) by '/&,A~, we reduce it to canonical form: 

au au a3u a=u 
77 + “~+~-v’~ (1.5) 

(z = -5, T' = -=l,c,h=q u = 3qh-8, Y’ = 2vc,-‘h-p) 

%&kZ.btatem.Mekhan.,53,6,1035-1037,1989 
*%RABHE R.A., Vortex and soliton phenomena in atmospheric electricity. Ul'yanovsk, 1988. Dep. 
at VINITI 19.04.1988, 2949-B88. 
'a' We take this opportunity to rectify an error made in /l/: the coefficient of the non-linear 
terms in (3.3), (3.4) should be 3/2. 
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2. Stea& solution. Eq.(1.5) with weak dissipation describes a shock wave with oscil- 

lations near the front /3/. To investigate the structure of these oscillations it is proposed 
/4/ first two write down a periodic solution of the KdV equation, obtained from (1.5) by put- 

ting v' = 0, and then to replace the arbitrary constants appearing in this solution by slowly 
varying functions of 2 and T', for which it is then possible to derive Whitham's averaged 
equations /5/, generalized to the weakly dissipative case. 

We now use the results obtained in /4/. The required solution of the KdV equation is 

2a 
u(z,~')=gpdna 

where dn(r.8) is the Jacobi function of modulus S, a is the amplitude of the oscillations, and 
U defines the phase velocity of the wave in a reference system associated with the variables 
2. z'. 

In the reference system x=2- UT', in which the wave has a steady profile, the mean 
value of the wave function (u), the amplitude (I and wavelength.2 may be written as follows 

/4/: 
(u) = I/* [I - (2 - .s’ - 3E/K)f”‘] IL-, n = ==/,s=f-‘h- 

h = 41/2f"'K (u-)-"'; f (a) = (i -s" + 9) 
(2.2) 

where K and E are complete elliptic integrals of the first and second kinds of modulus 8, U- 
the size of the jump at the shock-wave front, U=%u-. 

The value of s is determined by numerical solution of the equation 

v' (X - X,) = A' (8). F (8) = la If (*)E - (1 - s')(l -s/2)8] - '/, In f (8) (2.3) 

where X, is the coordinate of the onset of the wave, chosen arbitrarily. 
Substituting (2.2) and (2.3) into (2.1), one can uniquely determine the oscillatory 

structure of the wave in a weakly dissipative medium. As the dissipation increases, the pro- 
file of the shock wave front becomes monotonic. The solution of the BKdV equation for this 
case was studied in /6/, using B&klund transformations. 

It follows from (2.3) that far from the leading front of the centrifugal wave (x<X,,) 
*<I1 and the function dn(y,s) is approximately a superposition of harmonic functions /7/. 

Near the front (XZX,,)~ however8 -1 and dn(y,s)-s&hy, i.e., the oscillations take the form of a 
sequence of:solitons at distance h,=Xfrom one another, where h. has the value indicated in (2.2). 

Putting Xo - X=$ in (2.3) and going back to the original notation, one can find the 
minimum rotational VdOCity of the flow for which soliton-like oscillations can form at the 
leading edge of the shock wave: 

8-9 h=u- 
u p min - -h J z f(s)“‘K 

-p(s). T=- 3 

where n- is the size of the jump in the radial shift of the free surface at the shock wave 
front. 

We end with a few estimates, putting r,, = 10-l m, h =10-p m, and n-=10-* m. For water 
at room temperature Y = 1.05 x lo-am'/sec, which gives “qmin - - 10.5 m/set. For a less viscous 
liquid, centrifugal solitons form more easily. In the case of acetone, for example (* =4,26X10-' 
m'/sec), ‘pmin =: 4.2 m/set. 

These results show that the formation of centrifugal solitons in translational-rotational 
flow in real liquids in quite possible. 
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